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https://soundcloud.com/bachbot
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The big questions
• Where is the frontier of 

computational creativity?

• How much has deep learning 
advanced automatic composition?

• How do we evaluate generative 
models?

vs



TL;DR
• Deep recurrent neural network model for music capable of 

polyphonic automatic stylistic composition and harmonization

• Learns music theory without prior knowledge

• In a musical Turing test with 1779 participants, performance is only 
5% better than random chance



Open source; try it for yourself!
feynmanliang.github.io/bachbot-slides

http://feynmanliang.github.io/bachbot-slides


Overview
• Sequence modelling for music

• Deep recurrent neural networks (RNNs)

• Discoveries and demos



Motivating example for sequence modelling



Sequence modelling of text
The quick brown fox jumps _____
The quick brown fox jumps over
The quick brown fox jumps around
The quick brown fox jumps behind          

Question: What word comes next?



Sequence modelling of text
The quick brown fox jumps _____

The quick brown fox jumps over
The quick brown fox jumps around
The quick brown fox jumps lackadaisically



Sequence modelling of text
The quick brown fox jumps _____

P(over | the quick brown fox jumps)                   = 75%
P(around | the quick brown fox jumps)               = 24%
P(lackadaisically | the quick brown fox jumps)   = 1%



Sequence modelling of text
The quick brown fox jumps _____

P(over | the quick brown fox jumps)                   = 75%
P(around | the quick brown fox jumps)               = 24%
P(lackadaisically | the quick brown fox jumps)   = 1%

Question: Any potential problems?



The 2-gram sequence model
The quick brown fox jumps _____

P(over | jumps)       the quick brown fox = 90%
P(around | jumps)   the quick brown fox = 8%
P(behind | jumps)   the quick brown fox = 2%

Generating text using the 2-gram sequence model:
I
I am
I am enjoying
I am enjoying GOTO
I am enjoying GOTO Copenhagen
I am enjoying GOTO Copenhagen



n-gram models trained on Hamlet
● 1-gram

– To him swallowed confess hear both. Which. Of save on 
trail for are ay device androte life have

● 2-gram
– Why dost stand forth thy canopy, forsooth; he is this 

palpable hit the King Henry. Liveking. Follow.

● 4-gram
– King Henry. What! I will go seek the traitor Gloucester. 

Exeunt some of the watch. Agreat banquet serv’d in;

Examples taken from Dan Jurafsky, https://web.stanford.edu/~jurafsky/slp3/slides/LM_4.pdf



Music Primer



Modern music notation



Pitch: how “high” or “low” a note is




Duration: how “long” a note is




Polyphony: multiple simultaneous voices



Piano roll: convenient computational representation



Fermatas and phrasing



From Bach Chorales to Sequences



http://web.mit.edu/music21/ 

http://web.mit.edu/music21/


Transpose to Cmaj/Amin (convenience) 
Quantize to 16th notes (computational)



Transposition preserves relative pitches




Quantization to 16th notes: affects less than 0.2% of dataset



Question: How many chords can be constructed from 4 voices, 
each with 128 pitches?

Handling polyphony



Question: How many chords can be constructed from 4 voices, 
each with 128 pitches?

Answer: O(1284)! Data sparsity issue…

Handling polyphony



Serialize in SATB order

START
(62, True)
(56, True)
(52, True)
(47, True)

|||
(60, False)
(56, True)
(52, True)
(47, True)

|||

(.)
(60, False)
(57, False)
(52, False)
(50, False)

|||
(.)

(60, True)
(57, True)
(52, True)
(50, True)

|||

O(1284) => O(128) vocab. size!



Recurrent neural networks (RNNs)



Neuron
Input x, output y, parameters w, activations z



Feedforward neural network



Memory cell



Long short-term memory (LSTM) cell



Stacking memory cells to form a deep RNN
Unrolling for training



Sequential prediction training criteria

https://karpathy.github.io/2015/05/21/rnn-effectiveness/

https://karpathy.github.io/2015/05/21/rnn-effectiveness/


Training and optimizing BachBot



Training BachBot
RNN dynamics Initial state (all 0s)

=

Prob. distr. over sequences

+

Optimize the
RNN parameters…

…in order to maximize the
probability of the real

Bach chorales.



Deeper RNNs do better (to a certain point)



Samples from various points during training

100 minibatches:

500 minibatches:

2000 minibatches:

5000 minibatches:



Discoveries and Demos



Hidden state is difficult to interpret!
Input and memory cell (layer 1 and 2)



Layers closer to the output resemble piano roll (consequence of 
sequential training criteria)

Memory cell (layer 3), outputs, and predictions



Model learns music theory!

• L1N64 and L1N138: Perfect cadences with 
root position chords in tonic key

• L1N151: A minor cadences ending phrases 
2 and 4

• L1N87 and L2N37: I6 chords



Harmonization: given a melody (here C major scale)



Harmonization: produce the accompanying parts
https://soundcloud.com/bachbot



What if Bach remixed twinkle twinkle little star?
https://soundcloud.com/bachbot



Stand up if it’s your birthday



Thank You!
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